Purification of Human Hemoglobin and Drug Conjugation for Liver Targeting

Gord Adamson, Ph.D.
Therapure Biomanufacturing
Mississauga, Ontario, Canada

BPI West, San Francisco
March 2, 2017
Flexible, modern facility

- cGMP biomanufacturing facility
 - 136,000 ft\(^2\) (12,800 m\(^2\))
 - Flexible clinical and commercial production suites
- cGMP warehouse and offices
 - 30,000 ft\(^2\) (2,800 m\(^2\)) warehouse with cold storage
 - 14,000 ft\(^2\) (1,300 m\(^2\)) administrative offices

Ideal location with access to

- Global markets via Toronto Pearson International Airport
- Canada-US border in 1 hour
- Highly skilled and educated workforce
We Understand and Care about your Critical Path to Market

Development Services
- Cell Line
- Upstream and Downstream Processes
- Analytical Methods

cGMP Manufacturing Services
- Upstream Production
- Downstream Purification
- Aseptic Fill/Finish

Support Services
- Quality Control
- Quality Assurance
- Project Management
- Technology Transfer
Hemoglobin-Drug Conjugate Preparation from RBC Hemoglobin

Red Blood Cells (RBCs) → Purification → Hemoglobin (Hb) → Drug Conjugation → Cleavable Drug → Hemoglobin-Drug Conjugate (HDC)
• Hemoglobin-Haptoglobin (Hb-Hp) is naturally cleared predominantly to the liver

• Liver macrophages (Kupffer cells), via CD163, the Hb-Hp scavenger receptor

• Over 1.5 g Hb binding capacity
Selective tissue targeting of radiolabeled hemoglobin in rat by single photon emission computed tomography (SPECT/CT)

3 h post-injection of 10 µg 99mTc-Hb (0.5 mCi)
Liver cancer: ~700,000 deaths/year
5-year survival rate: 15%
Floxuridine is an approved anti-cancer drug with a narrow therapeutic index
Hepatic arterial infusion (by pump) of floxuridine is used in the treatment of:
 - Hepatocellular carcinoma
 - Colorectal cancer liver metastases

- Easy to administer
 - Standard IV
- High liver uptake
 - Lower dose required
 - Lower toxicity
- Binds to haptoglobin
- High drug load
Hemoglobin and HDCs present unique challenges:

- **Scale** – grams to kilograms of hemoglobin (Hb)
- **Purity** – removal of red blood cell and plasma components
 - isolation of a single Hb sub-type (HbA₀)
- **Safety** – inactivation and removal of potential blood-borne pathogens
- **Stability** – Hb is a tetrameric (α₂β₂) globular protein with four heme groups
 - Heme groups contain readily oxidized iron
- **Drug Conjugation** – high drug payload required
 - effect on haptoglobin and receptor binding
 - stable in circulation, cleavable inside target cells
 - applicable to a range of drugs
- **Analysis** – assays specialized for Hb, drug intermediate and HDC characterization
Hemoglobin separation from red blood cells

- Expired RBCs
- RBC Pooling
- Washing
- Lysis
- Pasteurization
- Concentration
- Stroma-free Hb

Hemoglobin chromatography

- pH/conductivity Adjustment
- Anion Exchange
- pH Adjustment
- Cation Exchange
- Nanofiltration
- >99% HbA₀

Drug activation and conjugation

- Nucleoside
- Phosphorylation
- Nucleotide
- Activation
- Conjugation
- Hemoglobin-Drug Conjugate
Hemoglobin Isolation from RBCs

- Tested and expired red blood cells (RBCs) from FDA licensed blood collection centers
- Hollow fiber filtration for plasma component removal and concentration adjustment
- RBC lysis by 1:1 WFI dilution
- Hollow fiber separation of RBC membranes from Hb and RBC proteins
- CO charging to stabilize Hb against oxidation:
 \[
 \text{Hb} + \text{O}_2 \rightarrow \text{OxyHb}(\text{Fe}^{2+}) \rightarrow \text{MetHb}(\text{Fe}^{3+}) \rightarrow \text{Denaturation}
 \]
- Viral inactivation by pasteurization (10 hours at 62°C, \(\geq 4.5 - \geq 5.5 \log_{10}\) virus reduction)
- Pasteurization also precipitates non-Hb components
- Solids removal by depth filtration, CO charging
RBC proteins, membrane lipids and plasma proteins are reduced to acceptance limits

<table>
<thead>
<tr>
<th>Units</th>
<th>Endotoxin</th>
<th>PE</th>
<th>PI</th>
<th>PS</th>
<th>CA</th>
<th>HSA</th>
<th>Spectrin</th>
<th>Glyco-</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td>≤0.06</td>
<td><5</td>
<td><5</td>
<td><5</td>
<td><0.1</td>
<td><0.36</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Lot A</td>
<td>≤0.06</td>
<td><1</td>
<td><1</td>
<td>1.8</td>
<td><0.01</td>
<td><0.01</td>
<td><0.05</td>
<td><0.05</td>
<td></td>
</tr>
<tr>
<td>Lot B</td>
<td>≤0.06</td>
<td><1</td>
<td><1</td>
<td>2.2</td>
<td><0.01</td>
<td><0.01</td>
<td><0.1</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Lot C</td>
<td>≤0.06</td>
<td><1</td>
<td><1</td>
<td>1.4</td>
<td><0.01</td>
<td><0.01</td>
<td><0.1</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

PE = Phosphatidyl Ethanolamine, PI = Phosphatidyl Inositol, PS = Phosphatidyl Serine
Measured by solid-phase extraction followed by RP-HPLC quantification

CA = carbonic anhydrase, HSA = human serum albumin, spectrin and glyco- phorin
Hemoglobin Chromatographic Purification

Stroma-free Hb

pH/conductivity Adjustment

Anion Exchange

pH Adjustment

Cation Exchange

Nanofiltration

>99% HbA₀

Anion Exchange Displacement Chromatography

- High pH, low ionic strength, low flow rate
- Acidic impurities bind with high affinity, displacing and eluting Hb and basic impurities

Cation Exchange Displacement Chromatography

- Low pH, low ionic strength, low flow rate
- Basic impurities bind with high affinity, displacing and eluting Hb

- Nanofiltration (≥5.0 - ≥5.5 Log₁₀ virus reduction)
- CO charging for stabilization
Purification of Hemoglobin by Displacement Chromatography

Anion Exchange Step

Hb with basic and acidic proteins, including multiple Hb subtypes

Final eluate is free of acidic proteins

Cation Exchange Step

Load eluant from anion exchange step

Final eluate is >99% HbA₀
Compared to conventional adsorption/elution chromatography, displacement chromatography provides:

- Higher yield
- 10-20x higher Hb recovery / mL resin
- Lower solution requirements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Self-Displacement</th>
<th>Bind/Elute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb mass recovered</td>
<td>1000 g</td>
<td>1000 g</td>
</tr>
<tr>
<td>Column volume</td>
<td>5 L Anion + 3 L Cation</td>
<td>51 L</td>
</tr>
<tr>
<td>Hb mass loaded</td>
<td>1234 g</td>
<td>1754 g</td>
</tr>
<tr>
<td>Hb recovery</td>
<td>81%</td>
<td>57%</td>
</tr>
<tr>
<td>Hb recovery/mL resin</td>
<td>200-300 mg/mL</td>
<td>20 mg/mL</td>
</tr>
<tr>
<td>Running buffer required</td>
<td>132 L</td>
<td>925 L</td>
</tr>
</tbody>
</table>
Displacement Chromatography Scalability

- Anion and cation exchange displacement chromatography steps provide identical purity at laboratory (8 mL columns) to commercial (7-16 L columns) scale

Anion Exchange Step

<table>
<thead>
<tr>
<th>Load Mass</th>
<th>Load / mL Resin</th>
<th>pH</th>
<th>Conductivity</th>
<th>Column L x D</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 g</td>
<td>210 mg/mL</td>
<td>8.9</td>
<td>0.5 mS</td>
<td>10 x 1 cm</td>
<td>1 cm/min</td>
</tr>
<tr>
<td>3200 g</td>
<td>200 mg/mL</td>
<td>8.8</td>
<td>0.3 mS</td>
<td>10 x 45 cm</td>
<td>1 cm/min</td>
</tr>
</tbody>
</table>

Cation Exchange Step

<table>
<thead>
<tr>
<th>Load Mass</th>
<th>Load / mL Resin</th>
<th>pH</th>
<th>Conductivity</th>
<th>Column L x D</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 g</td>
<td>308 mg/mL</td>
<td>7.5</td>
<td>0.5 mS</td>
<td>9.5 x 1 cm</td>
<td>0.6 cm/min</td>
</tr>
<tr>
<td>1700 g</td>
<td>254 mg/mL</td>
<td>7.6</td>
<td>0.4 mS</td>
<td>9.5 x 30 cm</td>
<td>0.6 cm/min</td>
</tr>
</tbody>
</table>
Hemoglobin Purity
Before Drug Conjugation

- Hb Purity: >99.0% HbA₀ (range 99.3-100%) by analytical anion exchange HPLC

Analytical anion exchange chromatography:
Purified HbA₀

- <1% MetHb (oxidized Hb, range 0-0.7%) by spectrophotometry (COOXimetry)
Drug Activation and Conjugation

Nucleoside Activation and Conjugation Chemistry

1. POCl₃, TMP, H₂O
2. pH 3 hydrolysis
3. CHCl₃ extraction
4. IEX free acid conversion

Ribavirin (RBV)
(or other nucleoside)

RBV 5’-monophosphate (RBV-P)

1. CDI, Imidazole, DMF (anhydrous)
2. EtOH/ether precipitation

Hb Conjugation

Hb Conjugation

1. Purified CO-Hb, pH 9.5
2. UF/DF

Hb-N

Hemoglobin-RBV Conjugate
Hazardous Materials Containment

- 2-person isolator
- Classifiable to levels C, B or A
- Located inside an isolated Class C area
- Containment of hazardous reagents
- Safe exhaust capability for CO gas
- Containment during material transfer and sanitization, and waste flow
Hb-FUdR: Drug Load

10 ± 2 FUdR per Hb tetramer

- ESI-MS: α and β globin chains with single or multiple FUdR-P groups
- Acid phosphatase cleavage of FUdR and RP-HPLC analysis
- Inorganic phosphate quantification (Ames method)
- 31P NMR measurement of the phosphoramide linkage
Hb-FUdR: Haptoglobin Binding

Size Exclusion Chromatography of HDC

Hb

Nucleoside analogue

HDC

Haptoglobin (Hp)

Hp-HDC Complex
Acid phosphatase cleaves FUdR from Hb-FUdR

Cleaved FUdR activity is the same as free FUdR

- Acid phosphatase cleaves FUdR from Hb-FUdR
- Cleaved FUdR activity is the same as free FUdR
Hb-FUdR Activity: Hepatocellular Carcinoma Model

Primary Liver Cancer Orthotopic Implantation Model

- Balb/c mice, HepG2 liver tumor line, orthotopic implant into the liver
- Twice weekly dosing for 6 weeks

• Tumors confirmed as hepatocellular carcinoma by histopathology
• Hb-FUdR suppressed tumor growth in 7/10 animals
• Equal dose of free floxuridine was ineffective (3/10)
• No significant adverse clinical signs
• No weight loss in animals treated with Hb-FUdR

Percent Animals with No Measureable Tumor

PBS: 20%
Floxuridine Alone: 30%
Hemoglobin-Floxuridine: 70%
Hb-FUdR Activity: Colorectal Cancer Liver Metastasis Model

Colorectal Cancer Liver Metastasis Model

- NCr nude mice, human HCT-116-derived tumor cells transfected with GFP (MetaMouse)
- Orthotopic implant into the ascending colon
- Twice weekly dosing for 5 weeks

Untreated (PBS)

Treated (FUdR or Hb-FUdR)

- Hb-FUdR inhibited primary colon tumor growth (volume) at all doses relative to untreated mice
Hemoglobin and Drug Conjugate Summary

- **Hb purification process:**
 - GMP process (1 g to multi-kg scale)
 - 2-stage displacement chromatography, using 3-5 L of resin per kg of purified Hb
 - >99% pure HbA₀ isolated from other Hb subtypes and RBC proteins
 - Hb oxidation prevented by CO control in the process stream atmosphere

- **Drug conjugation:**
 - GMP process for small molecule drug activation and protein conjugation
 - 10 drug molecules per Hb, releasable and active
 - Improved *in vitro* and *in vivo* activity compared to free drug in models of liver cancer and viral hepatitis
 - Phase I clinical trial in liver cancer FDA-approved for Hb-FUdR (TBI 302)
Acknowledgements

David Bell – VP, Drug Development & CSO
Gord Adamson – Scientific Director
Steve Brookes – Senior Manager
Jin Seog Seo – Research Scientist
Sri Wanduragala – Research Scientist
Amber Li – Research Scientist
Mukesh Mayani – Research Scientist
John Shi – Manager, Downstream Processing
Katherine Lu – Manager, Cell & Molecular Biology
Kate Matthews – Principal Scientist